
Journal of Statistical Physics, Vol. 11, No. 1, 1974 

Pair Correlation Function 
for a System with Velocity'- 
Dependent Interactions 
L. A.  Turski 1'2 

Received October 24, 1973; revised January 24, 1974 

The canonical statistical sum for the Breit-Darwin plasma is investigated 
by means of a generalized van Kampen cellular method. In particular, the 
pair correlation function is derived. This function agrees with that pre- 
viously obtained by Trubnikov from the approximate closure of the 
BBGKY hierarchy. The method developed in this paper can be used for 
the description of other systems in which the velocity-dependent forces are 
pairwise. 
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1, I N T R O D U C T I O N  

Two ra ther  impor t an t  p rob lems  are se ldom discussed in the numerous  papers  
and  books  concerning  bo th  equi l ib r ium and nonequi l ib r ium stat is t ical  
mechanics :  ve loc i ty-dependent  in teract ions  (VDI)  and m a n y - b o d y  forces. 

There  are many  physical  p rob lems  which require  the use o f  m a n y - b o d y  
forces, for  example ,  the s tudy o f  very dense l iquids.  Also,  the VD!  become 
impor t an t  in a var ie ty  o f  p rob lems  involving the mo t ion  o f " i m p u r i t i e s "  in a 
medium.  W h e n  the concen t ra t ion  o f  impur i t ies  is not  too  high we may  assume 
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that the properties of the medium are not dramatically different from those 
of the pure system. We can then eliminate the medium-impurity interaction 
by means of a suitable transformation of dynamical variables and, as a 
result, obtain a system of "impuri t ies" (or " impuri tons")  interacting via 
the VDI. (The interactions usually arise from the back-flow of the medium 
around the impurities.) 

The VDI and many-body forces are intimately associated with the 
theory of charged particles. If v/c is not too small, we need a better approxi- 
mation to the equation of motion of the particles than that provided by the 
Coulomb forces. The elimination of the field variables (to the first order in 
v/c) leads to a Hamiltonian description of the particle dynamics called the 
Breit-Darwin description. It was shown by Holstein and Primakoff (1) that 
in this approximation the Hamiltonian contains not only VDI but also 
genuine many-body velocity-dependent interactions, the latter being negligible 
only in systems with few particles. 

The Holstein-Primakoff Hamiltonian for the Breit-Darwin plasma can 
be written as 

H =  T +  U+  �89 ~. 15~.G.OB (1) 
AeB 

where T and U are the kinetic and Coulomb energies, respectively, and G is 
a complicated function of two- and three-particle positions 

C 

In (1), 15A are the canonical momenta of the particles. 
Since it is not very easy to handle either VDI or many-body forces by 

means of the methods of conventional statistical mechanics, Trubnikov and 
Kosachev (2~ and Trubnikov (3~ suggest a variant approach, which they call a 
Lagrangian formulation. By this they mean, for example, that in non- 
equilibrium problems the Liouville equation is written down directly from 
the equations of motion rather than from the Hamilton equations. 

In the case of equilibrium statistical mechanics the fundamental quantity 
(canonical statistical sum) can be written as 

Z = f ~r ~(mv){exp[--fiE(r, rnv)]}J(['/mv) (2) 

where r and my are the positions and kinematical momenta of the particles 
and E is the energy of the system expressed in terms of r and my. Here 
J(['/mv) is the Jacobian of the transformation from the canonical momenta 
f~A to the kinematical mVA. The symbol Sr ~(mv) denotes integration with 
respect to all the particles: 

~r ~(mv) - ~ d3rA da(mv~) 
A = I  = 
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The evaluation of Z in the form (2) is simpler for the reason that the energy E 
contains no many-body terms and the Jacobian J is velocity independent. 

Note that for the systems with VDI for which the matrix G in the 
Hamiltonian (1) contains no three-body terms there is no need for the trans- 
formation leading to Eq. (2) since the partition function Z is already of the 
form (2) (with J = 1). 

The Lagrangian formulation was used in Ref. 2 for derivation of the 
thermodynamic properties of the Breit-Darwin plasma, for example, the 
equation of state. A fairly complicated form of BBGKY hierarchy was 
developed in Ref. 3 and the two-particle equilibrium distribution function 
was derived from its time-independent version. This function was used in 
Ref. 4 to investigate the eigenmodes of the Breit-Darwin plasma. 

In this paper we propose a simple derivation of the pair correlation 
function for the Breit-Darwin plasma based on the use of the van Kampen 
cell method. (5-7) This method is similar to that previously used by Jackson 
and Klein (8) in their theory of the electric field fluctuations in a Coulomb 
plasma. 

2. Q - I N T E G R A L  A P P R O X I M A T I O N  

We consider a system of N identical particles, "electrons," each with 
mass m and charge - e  immersed in the neutralizing, positively charged 
background of infinitely heavy " ions ."  

The Lagrangian for such a system, to first order in V/C, can be written as 

N e 2 e 2 fVA" VB VA" rAs VB "rAg; 
L = A=ZE �89 -- �89 rAs-- + �89 "~C2( rA; ' + r ~  (3) ) 

The canonical momentum I~A is then equal to 

8 2 
f~A = mvA + ~A~ ~ (1 + rA~2rA~ | rA~)-mv~ 

B 

- mVA + E G ( r A B ) ' m v B  (4)  
B # A  

and the energy E is given by 

N 82 

A = I  FAB AT~B 

In what follows it is more convenient to use the kinematical momenta 
PA = rnvx instead of the velocities VA as the independent variables. 

If the transformation (4) is inverted and substituted into (5), we will 
obtain the Breit-Darwin Hamiltonian in the form derived by Holstein and 



4 L.A. Turski 

Primakoff, (1) i.e., with the many-body VDI. If this is done, any approximate 
statistical sum (for example, in the Mayer graph expansion form) becomes 
hopelessly complicated. Therefore we follow Ref. 2 and write the partition 
function Z as 

Z = f ~r 3P {exp[-[3E(r, P)]}J(P/P) (6) 

where E is given by Eq. (5) and J is the Jacobian of the transformation (4). 
From Eq. (4) it is obvious that J does not depend on the momenta P, and 

its r dependence is such that it is possible to evaluate J approximately. 
It was shown in Ref. 2 that for practical purposes, at least in the ring 

approximation, the Jacobian J can be approximated by the equilibrium value 
e x p ( -  ft/dc3), where f2 is a volume of the system, and dc is the characteristic 

screening length for (transverse) VDI, dc = c/top, where top is the plasma 
frequency. 

The more detailed considerations of the modifications due to the 
presence of the Jacobian J are postponed to Appendix A. 

Granted that with sufficient accuracy J(P/P)  does not enter the integra- 
tion in (6), we can define the Q-function as 

f ~r ~P e x p [ -  [3E(r, P)] = Z/J  eq (7) Q 

The integral Q in Eq. (7) can be evaluated by means of the Mayer graph 
expansion. It should be noted, however, that now the bond functions fAB 
depend on both the relative distance between particles and the momenta 
PA and P~. The Mayer graph expansion for Q, in the ring approximation (the 
fAB, as far as their r dependence is concerned, are as bad as bond functions 
for the Coulomb gas), leads to the equation of state of the form derived in 
Ref. 2. Here we propose to use the phase-space generalization of the van 
Kampen cell method. (5-7~ It was shown in Ref. 6 that this method allows a 
relatively simple derivation of the pair correlation function for the Coulomb 
gas. It turns out that, using a generalized version of the Ornstein-Zernicke- 
Zwanzig integral transform, (4'9~ we shall be able to derive the pair correlation 
function for the Breit-Darwin plasma directly from (7) without invoking the 
apparatus of the BBGKY hierarchy. 

3. P H A S E - S P A C E  CELL A P P R O X I M A T I O N  FOR THE 
Q INTEGRAL 

Let us assume that the 6N-dimensional space of variables (r, P) is 
divided into Jg" cells each of volume A. Let us further assume that the cells 
A (= = 1 ..... ~ )  are sufficiently large that it is meaningful to associate with 
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each of the cells a number of particles f~ which is practically constant inside 
the cell. The size of a cell A should not be too big, however, since then the 
number of cells Jg" would decrease and the replacement of the original 
degrees of freedom (r, P) by the set of occupation numbers {f~} would not be 
legitimate. It should be noted that details of the actual partition of the phase 
space as well as the actual sizes of the cells are unimportant for the present 
calculations. However, in some other applications of the cell method they 
can be quite important. (1~ 

The set of the occupation numbers f~ is obviously subject to the con- 
dition ~ f ~  = N. 

Associating each of the cells with a vector R~ (position of the cell) and 
momentum P~, we can approximate the energy E in (5) by 

E{fr = s + �89 ~ f .U .B f  ~ + �89 ~f~,P=.G~,~.e~f~ (8) 

where we use the short-hand notation U~ = U(R~ - R~), etc.; U is the 
Coulomb potential and G is the matrix defined in Eq. (4). The summation in 
(8) is over all the ~A: cells, and it is reasonable to replace the distance I R= - lid] 
for et = 13 by, for example, the characteristic length of the spatial subvolume 
of the cell A. This term, however, as in the van Kampen procedure, is irrele- 
vant for our further considerations and does not affect our results. 

The integration f 3r 3P in (7) can now be replaced by the summation 
over all the possible realizations of the occupation numbersf~ consistent with 
the restriction ~=f~ = N. 

Thus we have 

At= e x p { - f i ( E { f ~ } -  ~ f . ) )  (9) 

e~ 

where Ex is the Lagrange multiplier associated with the constraint ~ f ~  = N, 
i.e., the chemical potential, and the origin of the combinatorial factor is 
obvious. 

Using the Stirling approximation for f ! ,  we can rewrite the combinatorial 
factor in a form resembling the entropy of mixing, i.e., 

l--I= (AY~/f ~! )~  e x p f -  ~ [f~ln(f~/A)--f~]) (10) 

Then the Q-function takes the form 

Q = ~ exp(-/3F{f~}) (11) 
fct 

Here F{f~} can be regarded as a coarse-grained free energy of the system.(5-7, l o) 
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According to Refs. 5-7, the equilibrium value of the occupation number 
f~q is determined by the extremum (minimum) of the function F{f~}; i.e., 
OF/~f~ = 0; and the quadratic approximation for F in the vicinity of the 
equilibrium value off~ determines the pair correlation function. 

The above scheme is obviously approximate and a rather important 
question should be answered before going further: What is the approximation 
involved? For the case of a gas of neutral particles interacting via the 
velocity-independent forces this question was answered rigorously. (13~ 

For the case of the Coulomb plasma the situation is much more com- 
plicated; nevertheless some conclusions can be achieved here, too. In the 
limit of the hot, dilute plasma, i.e,, when the plasma parameter F = 
~e2n~ 13 << 1, the quadratic approximation to the Q-integral (11) is equivalent 
to the ring approximation in the Mayer graph expansion approach. The 
smallness of the parameter P is crucial for the whole cellular approach to the 
statistical mechanics of a plasma. (6> 

In our case, when the VDI are present the situation remains the same as 
in the Coulomb case, provided the additional parameter (dc3n0)-~ = 
(d/dc) 3"= ro/d~ is small. Here d is the mean distance between the particles, 
equal.to no 113, do = c/cop, and r0 is the classical radius of the electron. This 
parameter is usually very small indeed; for example, for hot, dilute plasma, 
where no = 1012cm -s and cop = 5 x 1010sec -1, d / d ~  10 -4 . For the 
thermonuclear plasma d/dc is of the order of 10 -2. 

If these two conditions F << 1 and d/do << 1 are satisfied, then the results 
obtained from the cellular method are equivalent to those obtained from the 
ring approximation. To the best of the author's knowledge, the pair correla- 
tion function for Breit-Darwin plasma was not derived by this method. The 
equivalent to our derivation of the correlation function, based on the 
BBGKY hierarchy, was proposed in Ref. 3. 

The easiest way of comparing the ring approximation and the cellular 
approach is to compute the free energy of the system. If this is done, the 
results of both methods are indeed the same. The small addition to the free- 
particle part of the free energy which shows up in the cellular method cal- 
culations (see Ref. 6) is essentially an artefact of the lowest-order Stirling 
approximation in (10) and can be removed by taking into account higher- 
order terms. 

To obtain post-ring approximation corrections to the free energy, 
correlation function, etc., for the Coulomb plasma is not the easiest thing to 
do. We are not going to do so for the Breit-Darwin plasma either. We feel, 
however, that this is not very interesting from the point of view of the 
velocity-dependent interactions. This is because the VDI corrections to the 
Coulomb post-ring approximation would be completely negligible, i.e., of 
higher order in dido. The same refers to the corrections coming from the 
Jacobian J(P/P)  (see Appendix A). 
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It  is a challenging problem to prove, in some detail, that the cellular 
method applied to the other system with VDI, as the Breit-Darwin plasma, 
would produce the correct results. We are strongly convinced that this is 
really the case and we do hope to return to this mathematical question in a 
separate publication. For the purpose of this paper, however, we feel that 
this is sufficient to appreciate the fact that the basically simple method pro- 
posed in the Ref. 5 can be used for the study of much more complicated 
systems and produces correct results. 

4. E Q U I L I B R I U M  D I S T R I B U T I O N  F U N C T I O N  

it is more convenient from now on to use the functional notation, i.e., 
to replace the occupation numbersf~ by the one-particle distribution function 
f(R=, P~) = f=/A, and the summation over cells by integration over con- 
tinuous variables R~ and P~ according to the formula 

 -+zx-lfadaR f d3P 

With this modification, F is now the functional o f f ( R ,  P) and the sum with 
respect to f~ should now be understood as a functional integration. The 
extremum condition OF/Of~ -- 0 now assumes the form 

SF/Sf(c~) = 0 (12) 

where c~ = (R~, P~). 
Using the explicit form o f F ,  we can write (12) as 

0 : -fi(P~2/2m) - fi.f daR2 daP2 U(R1 - R2).f(R2, P2) 

( d3R2 d3P2 PI" G(R1 - R2).P2f(R2, P2) 

- lnf(R~,  P1) - /x (12') 

The solution of Eq. (12') is the Boltzmann distribution function feq = 
3 exp(-~P2/2m). 

To see this, insert A exp(-fiP2/2m) into Eq. (12') and observe that the 
integral containing G vanishes, and that the term proportional to f d3R U(R) 
is equal to zero on the assumption of overall neutrality of the system. Since 
the constant A is obviously determined from the normalization f d3R d3pf = 
N and is equal to no(2~rmfi) -312 (no = N/R), then Eq. (12) reduces to the 
usual relation between the chemical potential and the density no for the ideal 
gas. 

We conclude that the equilibrium distribution function for our system is 
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the Boltzmann distribution function 

feq(R, P) = no(2=rn/fi) - a12 exp( -  f~p2/2m) 
=- no~z(P) (13) 

Should the full relativistic kinetic energy be used in (3) instead of its 
nonrelativistic limit, the equilibrium distribution will be the relativistic 
generalization of the Boltzmann one, i.e., the Jfintner distribution function. 

Expanding the functional F{f}  around its ex t r emumf  eq, we obtain 

F{f} = F { f  eq + 8f} = F { f  eq} + �89 +.. .  (14) 

where Sfis the deviation o f f  from its equilibrium value and 

(~l~l) = f d3R daP ~(R, P)~q(R, P) 

~C is the operator corresponding to the second functional derivative of F(f}.  
In the next section we will investigate this operator in some detail. 

5. PAIR CORRELATION FUNCTION 

The Q-integral (11) can now be written as 

= [exp(-/3F{f~ f D SfexpE-�89 ] (15) Q 

where we use the expansion (14) and neglect the higher-order corrections. 
Equation (15) indicates that the random variables gf have a Gaussian 

distribution. Hence, the inverse of the operator o& determines the correla- 
tion function (Sf(1) Sf(2)). More precisely, the operator f f  1 is an integral 
operator, with a kernel equal to @f(1) ~f(2)). 

The correlation function (Sf(1)8f(2)) can be identified with the pair 
correlation function because of its relation with the full two-particle distribu- 
tion functionf(2)(R1, R2; Pa, P2), 

f(2!(R~, R2;P~, P2) = (~if(R~, P~) 8f(R2, P2)) 
+ no2q~a(P1)~B(P2) 
- ~(R, - R2)3(P1 - P2)noq~B(P1) (16) 

The derivation of Eq. (16) is sketched in Appendix B. 
Using Eq. (12), we can easily, compute the kernel Y of the operator ~,, 

by simple functional differentiation. We have, then, 

82F 1=f~ = ~(R~2; P~ P2) = fi~(P1 -- P2)U(R~2) 
fi 5f(1) 8f(2) 

+ /?P~. G(R~2)-P2 
+ ( f e q ) - I  ~(Pl  -- P2) ~(Rlz) (17) 
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In order to find the kernel of the inverse operator J - 2 ,  we shall solve the 
integral equation 

fd3R2 P2)r/(R2, = ~:(R1, P1) (18) d3P2 ~(R12; P1, P2) 

for the function -q(R,P). The solution of Eq. (18) written as ~ = 
f d2 ~ -  2(1, 2)g(2) determines the inverse kernel ~ -  1. 

It is convenient to proceed with solution of (18) after taking its Fourier 
transform with respect to the space variables and redefining ~7 as ~(R, P) = 
no~B(P)x(R, P). We have then: 

~:k(P1) = xk(Vl) + rlofiUkj" d3P2 xk(P2)?s(ee) 

+ noflPl" Gk'f P2q~B(P2)xk(P2) d3P2 (19) 

We can solve Eq. (19) in two steps. First let us multiply (19) by ~o8(P1) and 
then integrate over P1 (note that q~B is normalized to unity). Because the third 
term on the right-hand side of (19) vanishes, we obtain 

f d3P ~s(P)xk(P ) = (1 + noflUk)-2 f d3p cpB(p){:k(p) (20) 

Next, let us multiply (19) by PI?B(P1) and again integrate over P1. Since 

f d 3P | Pq~B(P) = mfi- P 11 

we obtain: 

f = + nomO~) f d~P~B(V)P~ (21) 

Let F~, b be the inverse of the matrix {3 ab + mnoG~,O). Then (21) can be re- 
written as 

f d3P P aq)~(P)xk(P) = F~, b f d3P P b~B(P).(R(P) (22) 

Solving Eq. (19) with respect to X, we use the integral relations (20) and (22). 
In this way we obtain 

xk(P) = sek(P) - noflUk(1 + noflUD-2 ; d3p ~B(P)~:k(P) 

- nofiP. Gk. rl,'f d3P2 9B(P2)P2 ~:,,(P2) (23) 

We note that the transformation from ~: to X given by Eqs. (20) and (21) is 
indeed a generalization of the Ornstein-Zernicke integral transform. 4,9 
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The right-hand side of Eq. (23) multiplied by n0cpB(P) defines the inverse 
kernel ~ s  1(P1, P2) 

Yk-~(Pz, P2) = noq%(P~) 8(Pz - P2) 

t /3U. [3P1.G .Vk.p@ (24) + n~ 1 + nofiUk 

Comparing now (24) with (16), we are able to write the two-particle distribu- 
tion function for our system as 

f~2)(P1, P2) = no2~oz(P~)q~z(P2){S(k) + gk(P1, P2)} (25) 

where the pair-correlation function gk(Px,P2) is given by 

gk(P~, P2) = -[fiU~/(1 + n0[3Uk)] - flP~.Gk. Vk'P2 (26) 

The pair correlation function given in (26) consists of two parts. The first part 
is just the conventional radial pair correlation function for the system with the 
potential U, and the second is the genuine velocity-dependent correction. 
Our correlation function gk can also be written as 

gk(Pz, P2) = - f i g~  -ff - /3Pz. G~, f~.P2 (26') 

This allows us to write t h e f  (2) function a s , f  (2) ~ exp[- /?(U elf + PI" G e f f ' P 2 ) ] "  

This is the behavior of the two-particle distribution function expected 
on the basis of general arguments; i.e., t he . f  (z) should be proportional to 
exp(-/3U),  where U should be an effective two-particle interaction energy. 
Effective here means that the bare interaction energy between the particles 
~hould be recognizable in terms of U only at small relative distances; at large 
spatial separation U should be negligible and the two-particle function,f(2) 
should be just the product of equilibrium distribution functions. This is 
exactly the case for our function (26), as can be seen from the explicit calcula- 
tions in the next section. 

6. EXPLICIT C A L C U L A T I O N  OF gk(P1, P2) 

Equations (25) and (26) are the solutions of our problem. In order to see 
,that they agree with the BBGKY solution of Trubnikov, we shall compute 
the various Fourier transforms appearing in them. 

The Fourier transform of the G~b(x) matrix from Eq. (4) is 

F e 2 ~ab x~xb~ 
Gp, b = j dax (exp ik. x) ~ \~-~ + 

= (nodc2k2)II~b (27) 

where dc is the characteristic screening length for the VDI (transverse!), 
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which is incidently the London penetration depth, dc = c/~%, and II~ b is the 
projection operator in a direction perpendicular to k: 

gl~ b = 8~b _ k~kb/k  ~ 

The inverse of the matrix 3 ~ + mnoG~ ~ can be computed quite easily and is 
equal to 

F~, b = (1 + k2do2)-ik2dc~(a ab - k~kb/k4dc ~) (28) 

In this way the effective matrix G~ rf is given by 

G~[ f = m-l(1 + k2dc2 ) - i I I k  (29) 

and the velocity-dependent part of gk is 

- (nof3/m)(1 + k2dc 2)-  l I I~bp~p2b 

The velocity-independent part is just the Debye-Htickel function; i.e., 
1/(1 + k2d2), where d is the Debye radius. 

The final form of gk(Pz, P2) is then 

1 1 fl P1.Nk.P2 (30) 
gk(P1, P2 )=  1 + k2d  2 + 1 + k2dc2 m 

The inverse Fourier transform of (30) is then 

g(R~2; P1, P2) = gD~(Rz2) + (fie2/m2c2d~)P~'F(R~2/d~)'P2 (31) 

where 

F(x) = 1Ix[-l(exp - I x l )  + V o V{(1 - exp - Ix l ) / lx l )  

This is the Trubnikov (a) form of the pair correlation function. For distances 
Ix] short compared to d and de, the effective energy of interaction between 
the particles given by (31) is the bare energy of two particles computed from 
expression (5); for large distances the effective energy of interaction between 
the particles is negligible. 

7. C O N C L U S I O N S  

As was shown above, the simple phase-space cell method allows us to 
compute the pair correlation function for a Breit-Darwin plasma. Our 
derivation seems to be much simpler than that in Ref. 3, at least in the opinion 
of the present author! The above calculations support our use of the corre- 
lation function (30) in the Zwanzig equation for the eigenmodes of the Breit- 
Darwin plasma. (~) As was mentioned in Ref. 4, the use of the correlation 
function proposed by Krizan (1~) leads to divergences in the coefficients in the 
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kinetic equation. These divergences are due to the long-range oscillations in 
the space dependence of the Krizan function. 

These oscillations apparently result from use of the restricted Darwin-  
Breit Hamiltonian, i.e., the Hamiltonian in which many-body interactions 
are omitted. In Ref. 4 the use of  the restricted Darwin-Breit  Hamiltonian 
leads to no trouble since the averaged Liouville operator in the Zwanzig 
variational principle derived from it and that in Trubnikov's  Lagrangian 
approach coincide. 

It  is a challenging problem to carry over the calculation of the statistical 
sum Z directly from the full Hamiltonian (1) since it requires some feeling 
about how to handle not only velocity-dependent but also many-body 
forces. The above formalism could be applied to any other physical system 
with pairwise VD| .  One can think about the use of  this approach in the 
theory of solutions, for example, aHe atoms in 4He. The interaction between 
the aHe atoms due to the back-flow of 4He is of the form P1P2"f(r12). The 
other possible candidate is the system of quasiparticles in 4He rotons. 
Recently Roberts and Donnelly (12) considered some dynamical problems in 
~He using a dipolelike form of the interaction between the rotons. 

These two problems are certainly more interesting than the Breit-Darwin 
plasma from the point of  view of possible practica21 applications. To now, 
however, it is only the latter for which the statistical theory has been developed 
in some detail. It  seems to be reasonable, therefore, to use this system as a 
test of the applicability of a new theoretical technique. 

A P P E N D I X  A 

The statistical sum (6) contains the Jacobian of the transformation from 
the generalized momenta  PA to the kinematical momenta  PA ---= rnvA. It  was 
assumed in our calculations that this Jacobian is essentially a constant 
number and, for that reason, it is sufficient to investigate the Q-integral only. 

In this appendix we should like to discuss this approximation in greater 
detail. 

First, let us note that the Jacobian J (P /P)  is the determinant of the 3N- 
dimensional matrix 

3 ab 3A~ + a~ = (A.1) GAB, a = 1 ,2 ,3 ,  A 1 .... , N  

We will denote the 3N-dimensional matrix trace by Tr and the trace operation 
with respect to the tensor indices (a, b) by tr. 

We have the following identity valid for all nonsingular matrices: 

Det a = exp(Tr log a) (A.2) 
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Equation (A.2) together with the formal expansion log(1 + a ) =  
-7,~= i n-  1(_ 1),a,~ allows us to write 

( 2 ( - 1 ) ~ T r G n }  - e x p ~  (A.3) J (0 /P)  = Det(1 + G) = exp - ,=~ n 

We note that the J could be now incorporated into the energy in exponent of 
(6) in the guise of a potential energy term Vj -- -[3-zq~, which, however, 
contains many-body interactions. 

Going over to the occupation number representation and then using the 
functional notation from Sections 3 and 4, we are able to write (A.3) in the 
form 

n = 2  

where 
t" 
J d l  -.. dnf(1) . . .f(n) tr G(1, 2) ... G(n, 1) (A.5) 

The n = I term is omitted from the cell version of (A.3) on the same basis as 
the one-cell contributions to the Coulomb energy in Eq. (8), i.e., we replace 
G ~  by some constant and then Tr G contributes an additional irrelevant 
constant to the free energy F(f~}. Due to the translational invariance of 
G(R~ - Rj), the structure of the nth integral r is analogous to the ring 
integrals in the Mayer graph extension. 

The Jacobian potential Vs = - [ 3 - 1 ~  contributes terms of the order of 
ro/d~ smaller than the other terms in Eq. (12), where ro is the classical electron 
radius, ro = (e2/mc 2) ~ 10 -13 cm. 

To see this, compute the derivative of Vj: 

3f(1) = _f l -1  ( -  1)" d2 ... dnf(2) . . .f(n) 
r ~ = 2  

• tr G(1, 2) ... G(n, 1) (A.6) 

The solution of Eq. (12), supplemented by the term (A.6), is again given by 
the Boltzmann distribution function. Indeed, the integrals on the right-hand 
side of (A.6) f o r f  = f e q  = noq~B do not depend on R1 and can be evaluated 
by transforming to the Fourier space in R, 

L~ = [aq%/3f(1)]lr=yoq = n(no) '~-~ fd3k tr{G(k)}" 

Using the Fourier transform of G(k) given in (27) and noting that the matrix 
IIk is idempotent, we obtain L,  = no z f d3k (k2dc ~)-~ and thus 

ro 
d3k ( -  1)~(k2do 2)- ~ = ~ ~ 
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This term is negligible in comparison with other terms in Eq. (12), since the 
classical radius of electron r0 is always much less than de. 

As we see, it is quite legitimate to keep the Boltzmann function as an 
equilibrium distribution function. 

In a rather more cumbersome way, it is possible to establish that the 
corrections to the second derivative of F due to the presence of Vj are also 
negligible. 

The other way of taking into account the Jacobian corrections is via 
the Mayer graph extension of Z. Using the language of Ref. 2, we have then 
two kinds of bonds, Mayer bonds fA~ = exp(--[~EAB) -- 1 and Jacobian 
bonds. The ring approximation is equivalent, in the functional formulation, 
to the following procedure: We write Z as 

Z = <exp{- [3E} exp{-  [3 l~-}) 

where <...) denotes functional integration. We compute the equilibrium 
distribution function taking into account the full functional E + Vj. Further 
we write 

Z = [exp( - -~Vj{ feq})][exp[( - f iF{ feq})  l 

x <exp[-�89 

Since the equilibrium distribution function is still of  the Boltzmann form, 
there is no difference between the above formula and the formula in which 
we use the Q-integral. 

This is exactly the same approximation which was used by Trubnikov 
and Kosacher in their calculations of the thermodynamic properties of the 
Breit-Darwin plasma. The pair correlation function which we derive in this 
paper using the approximation described above is equivalent to that which 
follows from the approximate closure of the BBGKY hierarchy in Ref. 3. 

A P P E N D I X  B 

The relation between the two-particle distribution function and the mean 
value of the product of the two single-particle distribution functions (16) is 
based upon the following arguments. 

Consider the exact one-particle distribution function f (R,  P), 

N 

f (R,  P) = ~ ~(R - RA) 8(P - PA) (B.1) 
A = I  

This function, averaged over the volume As, gives the microscopic definition 
of the functionf(R~, P~). The mean value of f with respect to the probability 
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distribution function p(R1,. . . ,RN;PI .... ,PN) is equal to the one-particle 
distribution function foq, 

f e q  = not4)B ' i.e. ( f }  = f e q  

The two-particle distribution func t ion f  (2) is defined as 

f d3R3 ... d3RN d3P3 ... d a p x  p(R,  R ' ,  R3 RN P, P', P3 Pu) 

The right-hand side of (B.2) can also be written as 

<f(R, P)f(R' ,  P')} - ~(R - R') 3(P - P ')<f(R, P)} 

and therefore 

f(2)(R, R'; P, P') = ( f (R ,  e ) f (R ' ,  P')} - 3(R - R') 3(P - P ' ) f""  (B.3) 

In terms of our coarse-grained function f ,  (B.3) takes the same form, but now 
the average denoted by (---} is taken over the function space with the weight 
function e x p ( -  flF{f}). 

Assumingf  = f*q + ~f, we can rewrite (B.3) as 

f(2)(R~, R2; P~, P2) = (Sf(R~, P~) 8f(R2, P2)} 
- 3(Rz - R2) 8(Pz - P2)noq~B(Pz) + no2q)B(P~)9~(P2) 

(B.4) 

where we use the quadratic (Gaussian) approximation for F(f} and hence 

(~f} = 0. 
Note that (B.4) is the formula (16) of the text. 
The use of the coarse-grained, one-particle distribution function as a 

fundamental dynamical variable is analogous to the Vlasov description used 
in plasma physics. 
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